

Land Management Effects on Runoff Water Quality in Swift Current Creek Watershed

Brian McConkey, Allan Cessna, Marty Peru Agriculture and Agri-Food Canada

Methods

- Three 5 ha (11 ac) instrumented watersheds at **SPARC**
- Runoff quantity from 1962 to date
- Intermittent water quality data since 1971
 - Sediment
 - Nitrate
 - Ortho P
 - Ammonium
 - Dissolved organic carbon
 - Herbicides

Snowmelt Runoff (mm) From Fallow 1995-2002

	Conventional	No-Till	"Organic"
Runoff	Wheat-Fallow	Wheat-Fallow	Wheat-Fallow
Days	39	58	39
Mean Daily	1.8	3.9	4.0

- No-Till significantly more runoff in some years due to snow trapped in chem fallow
- Other differences consistent with known watershed behaviour

	Conventional	No-Till	"Organic"
Runoff	Wheat-Fallow	Wheat-Fallow	Wheat-Fallow
Days	39	42	22
Mean	1.91	1.82	3.53
Daily			

 Any differences consistent with known watershed behaviour

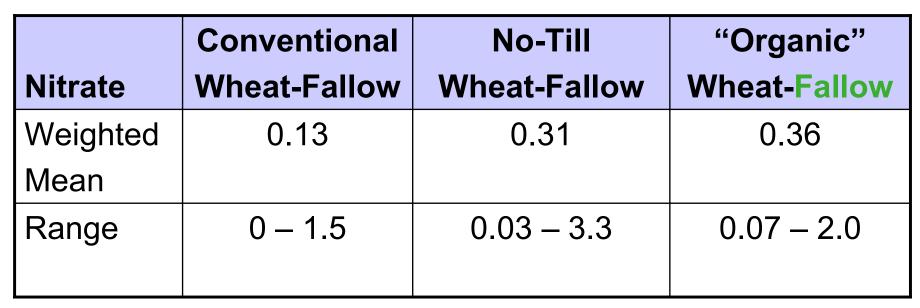
	Conventional	No-Till	"Organic"
Sediment	Wheat-Fallow	Wheat-Fallow	Wheat-Fallow
Weighted Mean	0.45	12.94	0.09
Range	09	0 - 109	0 - 0.2

- Water erosion was not a serious problem in these years but was significantly greater from chem fallow
- Other differences consistent with known watershed behaviour

	Conventional	No-Till	"Organic"
Sediment	Wheat-Fallow	Wheat-Fallow	Wheat-Fallow
Weighted	0.24	0.42	0.74
Mean			
Range	0 - 3.1	0 – 1.9	0 - 0.45

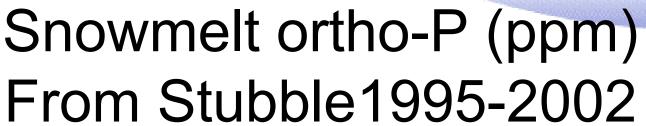
- Any differences consistent with known watershed behaviour
 - Organic only fall tilled as necessary

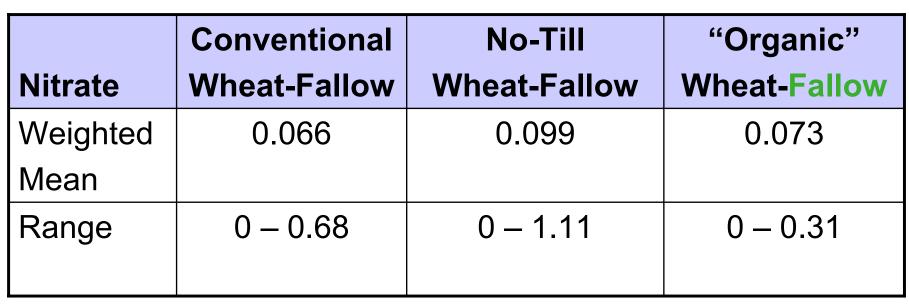
Snowmelt nitrate (ppm) From Fallow 1995-2002


	Conventional	No-Till	"Organic"
Nitrate	Wheat-Fallow	Wheat-Fallow	Wheat-Fallow
Weighted	1.28	0.74	1.77
Mean			
Range	0.37 - 4.70	0.23 - 7.30	0.56 - 6.44

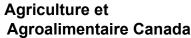
 Nitrate losses from green manure fallow was significantly greater than other fallows in 2 years

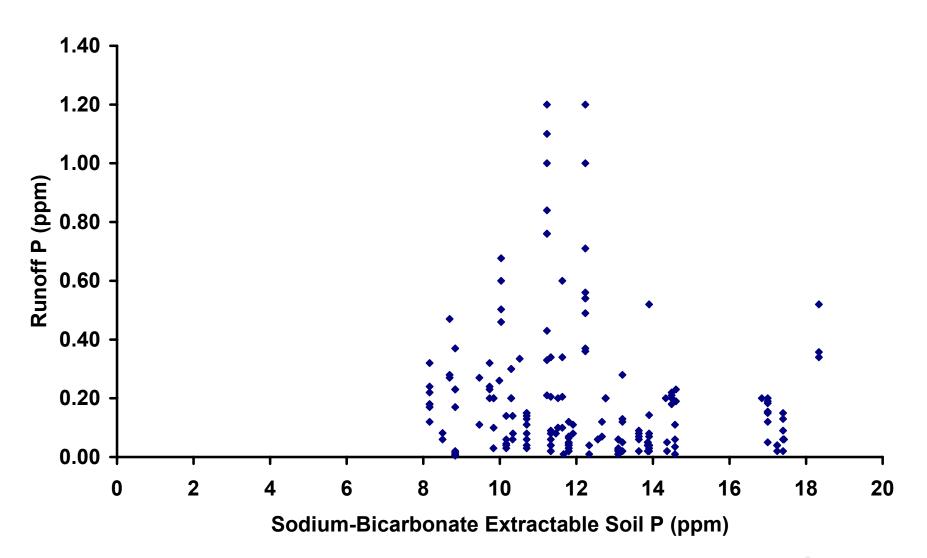
 Any differences consistent with known watershed behaviour



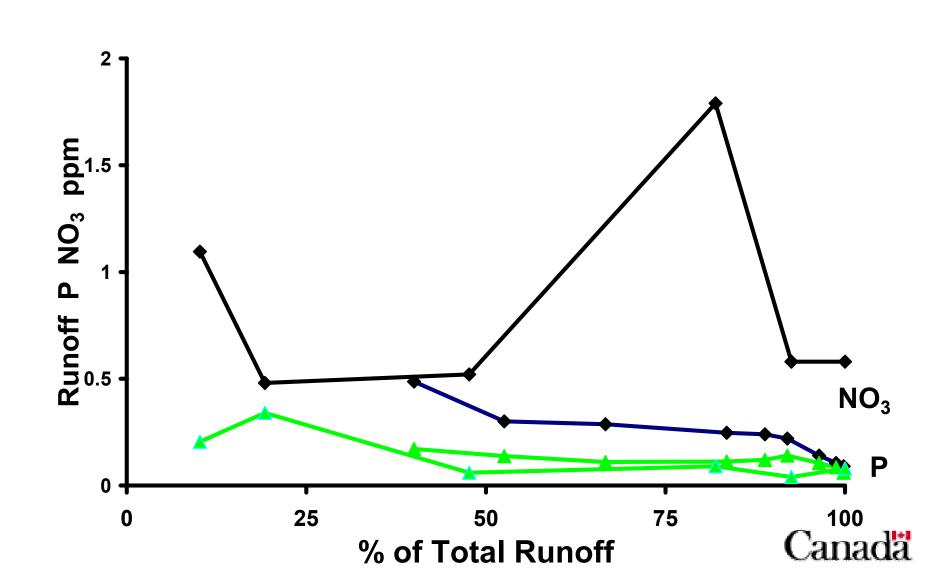

	Conventional	No-Till	"Organic"
Nitrate	Wheat-Fallow	Wheat-Fallow	Wheat-Fallow
Weighted	0.22	0.13	0.32
Mean			
Range	0.08 - 0.74	0.04 - 1.28	0.13 - 1.38

- No differences among watersheds although "organic" system hand no P additions since 1991
- Alberta aquatic guideline for Total P is 0.05 ppm
- AB guideline unachievable in these watersheds




- No differences among watersheds although "organic" system hand no P additions since 1991
- Alberta aquatic guideline for Total P is 0.05 ppm
- AB guideline unachievable in these watersheds

Runoff P vs Soil P

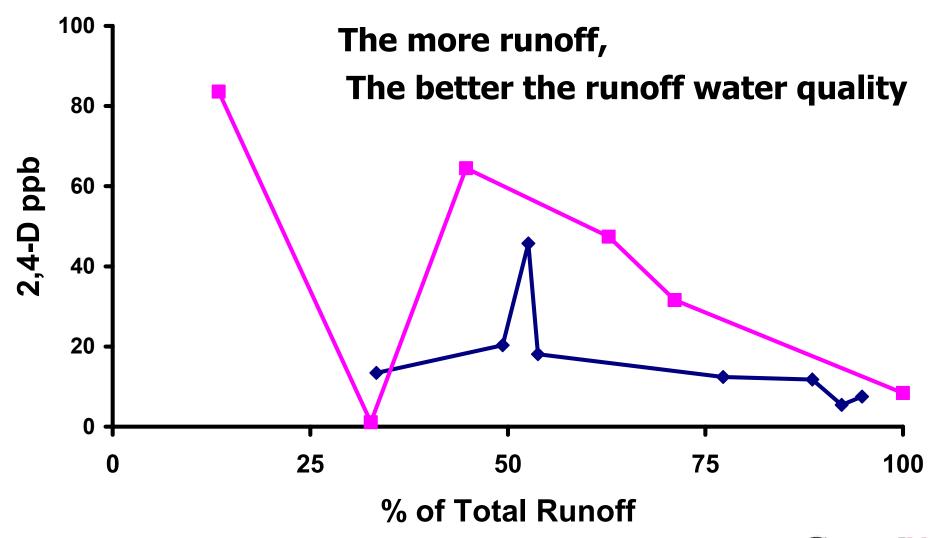


Runoff P and NO₃


Snowmelt 2,4-D(ppb) From Fallow 1995-2002

	Conventional	No-Till	"Organic"
Nitrate	Wheat-Fallow	Wheat-Fallow	Wheat-Fallow
Weighted	14.90	7.25	3.34
Mean			
Range	5.43 - 45.7	2.19 - 17.3	0.1 - 12.21

- 2,4-D applied in previous fall on conventional and no-till only
- Water Quality Guidelines:
 - Drinking: 100 ppb (exceeded in some runoff events here)
 - Aquatic: 4 ppb (routinely exceeded)
- Why 2,4-D on "organic" system?



- Hill et al. (2002) analyzed precipitation across prairies including in SW SK (Neville)
- 2,4-D in rain 0 3.2 ppb at Neville
 - Higher than some prairie sites and lower than some others (9.2 ppb max observed prairie 2,4-D conc.)
- Add dry deposition (snow good scrubber) plus any local drift and 2,4-D in organic system is reasonable (?)
- (Bromoxynil and MCPA also widely observed in rain and locally can be be at much higher concentrations than 2,4-D)

Runoff 2,4-D

Canada

Dissolved Organic Carbon (ppm) From Fallow 1995-2002

Conventional	No-Till	"Organic"
Wheat-Fallow	Wheat-Fallow	Wheat-Fallow
13.09	12.67	16.53
11.3 - 51.8	6.3 - 37.8	8.78 - 35.25
	Wheat-Fallow 13.09	Wheat-Fallow 13.09 12.67

- Water Quality Guidelines:
 - Drinking: 4 ppm for chlorination

Dissolved Organic Carbon (ppm) From Stubble 1995-2002

	Conventional	No-Till	"Organic"
Nitrate	Wheat-Fallow	Wheat-Fallow	Wheat-Fallow
Weighted	23.7	22.65	19.30
Mean			
Range	14.4 - 43.6	15 - 62.7	12.5 - 36.3

- Water Quality Guidelines:
 - Drinking: 4 ppm for chlorination

Triallate(ppb) From Fallow 1995-2002

	Conventional	No-Till	"Organic"
Nitrate	Wheat-Fallow	Wheat-Fallow	Wheat-Fallow
Weighted	1.52	6.83	0
Mean			
Range	1.2 - 5.6	1.4 - 16.6	Not detected

- Non-incorporated triallate in no-till system significantly increased losses vs incoporated triallate in tilled system
- Water Quality Guidelines:
 - Drinking: 230 ppb
 - Aquatic: 0.24 ppb (routinely exceeded)

Rainfall Runoff

- Few events
- Initially no-till had greater runoff than expected based on past behaviour, now (2002) that does not appear to be the case
- No clear management differences on water quality
 - P concentrations can be very high (10 ppm)

Grass vs Cropland?

Runoff	Grass	Conv. Till
(mm)		Wheat-Fallow
Days	154	103
Daily	1.27	1.17
Daily Mean		

· Grass (in wide rows) similar to cropland

Sediment	Grass	Conv. Till
(ppk)		Wheat-Fallow
Weighted	0.048	0.073
Mean		
Range	0 - 0.34	0 – 0.148

Grass (in wide rows) similar to cropland

Nitrate	Grass	Conv. Till
(ppm)		Wheat-Fallow
Weighted	0.24	0.07
Mean		
Range	0 - 0.32	0 – 0.08

Grass (in wide rows) similar to cropland

Ortho-P	Grass	Conv. Till
(ppm)		Wheat-Fallow
Weighted	0.188	0.090
Mean		
Range	0 - 0.34	0 – 0.24

Grass (in wide rows) similar to cropland

2,4-D	Grass	Conv. Till
(ppm)		Wheat-Fallow
Weighted	4.33	22.4
Mean		
Range	0-11.7	0.1-63

- Grass has less 2,4-D (not applied)
 - Shows significant atmospheric deposition

Thoughts and Summary

- Having surface water that meets all aquatic water quality guidelines not practical goal in Swift Current Creek watershed
 - Low nutrients (P) especially difficult to achieve
 - Low runoff amount can mean lower quality

Thoughts and Summary (2)

- Land management in watershed does affect water quality
 - Extra care needed since any added degradation can push water quality into more undesirable state
- Fall-applied herbicides should be discouraged on land whose runoff readily enters creek

